MUSICA EN LINEA



domingo, 27 de mayo de 2012

UNIDAD 2

Elementos móviles


Elementos móviles del motor
El grupo de elementos motrices es el encargado de transformar la energía térmica, desarrollada en el interior del cilindro, en energía mecánica, a través de un sistema biela-manivela que transforma el movimiento alternativo del émbolo en movimiento de rotación del cigüeñal.
El conjunto esta formado por una serie de elementos sometidos, durante su funcionamiento, a grandes esfuerzos y altas temperaturas. Por ello están dotados de características especiales, en función de tipo de motor y de la potencia a desarrollar.


Embolo o pistón
En la carrera de explosión, el pistón recibe un fuerte impulso por su parte superior, que lo lanza del PMS hacia el PMI. Este impulso se transmite al cigüeñal por medio de la biela. La fuerza que actúa sobre la cabeza del pistón en el momento de la explosión depende del tipo del vehículo de que se trate, pero puede suponerse de 1500 kg. Este impulso lanza al pistón hacia abajo con una velocidad lineal aproximada de 12 m/s en un motor que gire a 5.000 rpm. Las temperaturas medias que alcanza el pistón durante el funcionamiento oscilan entre los 300 a 400ºC.
El pistón, por tanto, deberá ser resistente para soportar las presiones y elevadas temperaturas que se desarrollan en el momento de la explosión y tener un peso reducido para atenuar los efectos de inercia debidos a la gran velocidad con que se mueve.

Una de las características importantes del pistón es la precisión de algunas de sus medidas debido a la extremada exactitud de su acoplamiento con el cilindro para mantener la estanqueidad. También hay que considerar la influencia de la dilatación de los materiales empleados. Si el émbolo se ajusta en frío, al producirse la dilatación, se agarrota. Si por el contrario se ajusta en caliente, con el motor frío se produce un cabeceo en el émbolo que golpea las paredes del cilindro. Debido a esto se requiere el empleo de materiales con un reducido coeficiente de dilatación térmica, muy difícil de conseguir con las aleaciones ligeras.
Estructura del embolo
Un embolo es semejante a un vaso invertido, completamente hueco para reducir al máximo su peso. Esta formado por una cabeza () destinada a recibir los esfuerzos de empuje, en el cual se mecanizan las ranuras () que contienen los aros o segmentos encargados de hacer el cierre hermético con el cilindro. La parte inferior llamada falda (), sirve de guía al embolo en su desplazamiento por el cilindro. En ella se sitúa el alojamiento () destinado al ajuste del bulón de amarre con la biela, a través del cual se transmiten los esfuerzos de empuje.

La cabeza del émbolo puede ser plana, o adoptar formas especiales, destinadas a provocar la turbulencia del gas, como ocurre en los motores Diesel, o con protuberancias en forma de deflector para conducir los gases, en los motores de inyección directa y también en los de 2 tiempos. También los pistones pueden tener rebajes para no interferir con las válvulas
Características de los émbolos
Teniendo en cuenta las condiciones de funcionamiento a que están sometidos, los émbolos deben reunir las siguientes características:
  • Disponer de una estructura robusta, sobre todo en las zonas de mayor esfuerzo, como son la cabeza y el alojamiento del bulón.
  • Tener el menor peso posible y estar perfectamente equilibrados en todos los cilindros.
  • Máxima resistencia al desgaste y a los agentes corrosivos.
  • Mínimo coeficiente de dilatación.
  • Gran conductibilidad térmica.
El material empleado para la fabricación de émbolos destinados a motores es a base de aleaciones ligeras, a base de aluminio-silicio con ligeros contenidos de Cu, Ni y Mg, fundidas en coquilla. Una vez mecanizados se someten a un tratamiento térmico escalonado con la finalidad de elevar la dureza y resistencia al desgaste.
Para motores de alta potencia y Diesel sobrealimentados, los pistones se fabrican mediante forja y estampación, con altos contenidos de silicio, hasta un 25%.

Tipos de émbolos
Los diferentes tipos de émbolos empleados actualmente en automoción se diferencian esencialmente por los procedimientos empleados en cuanto a diseño, para regular la dilatación térmica. Los mas importante son los siguientes:

  • Émbolos autotérmicos con bandas anulares
    Las bandas de acero, a modo de arandelas, se insertan circularmente durante la fundición e impiden una dilatación térmica exagerada en todo el perímetro circular. Estos émbolos de falda completa son aptos para motores de dos tiempos con distribución por lumbreras y aseguran una holgura constante en toda su periferia.

  • Embolo compensador
    En el se aprovecha la diferencia de temperatura entre la cabeza y la falda para fabricarlo en forma acampanada y ligeramente ovalada en sentido perpendicular al eje del bulón. Con esta disposición la falda del émbolo queda ajustada en frío, lo que impide el cabeceo. Cuando se alcanza al temperatura de trabajo, la dilatación se produce en el sentido del menor diámetro del émbolo, que toma forma cilíndrica.

  • Embolo compensado por ranuras
    En esta clase de émbolo la compensación térmica se realiza practicando en la falda del émbolo unas ranuras en forma de "T" o en "U". Esta precaución da lugar a que la dilatación térmica se produzca a través de ellas sin que aumente el diámetro del émbolo. Este se caracteriza por su sencillez y economía, empleándose en motores de serie de pequeña cilindrada.
    Es necesario cuidar en su montaje que la ranura no quede situada en la zona de mayor esfuerzo lateral.
    Otro émbolo de este tipo es el tubular, donde la cabeza va separada de la falda por medio de una garganta circular, interrumpida en la zona del bulón. Con esta disposición la falda queda separada de las fuertes temperaturas y dilataciones térmicas a que está sometida la cabeza.

Segmentos
Los segmentos son unos anillos elásticos situados sobre las ranuras practicadas en la cabeza del pistón. Tienen como misión:

  • Hacer estanco el recinto volumétrico durante el desplazamiento del émbolo.
  • Asegurar la lubricación del cilindro.
  • Transmitir el calor absorbido por el émbolo, a la pared del cilindro para su evacuación.

Tipos de segmentos según el trabajo que realizan
Existen dos tipos de segmentos:

  • Segmentos de compresión.
  • Segmentos de engrase
Segmentos de compresión
Los segmentos de compresión están destinados a realizar el cierre hermético del cilindro y van colocados en número de 2 ó 3 en la parte superior del émbolo. Su posición el el pistón hace que estos segmentos sean los mas afectados por la temperatura y las elevadas presiones que se originan durante el ciclo. El primero de ellos es el que recibe directamente los efectos de la explosión, por lo que también se le conoce como "segmento de fuego".
Su forma rectangular les permite adaptarse perfectamente a la pared del cilindro y facilita la transmisión del calor y su montaje flotante sobre la ranura del émbolo para compensar las dilataciones que en ellos se producen. Los segmentos deben poder moverse en sus alojamientos libremente con una holgura axial calculada. Tambien deben contar con una abertura entre puntas es necesaria para asegurar en todo momento una presión radial del segmento sobre las paredes del cilindro a pesar de las dilataciones y del desgaste.


La estanqueidad se consigue por desplazamiento lateral de los segmentos en su ranura correspondiente. Durante el desplazamiento del émbolo quedan asentados sucesivamente sobre las superficies superiores e inferiores de las ranuras (como se ve en la figura inferior), asegurando así el cierre hermético e impidiendo la fuga de gases a través de esta holgura de montaje.
Esta pequeña holgura permite a su vez el engrase del cilindro y las superficies en contacto por bombeo, ya que durante el descenso se llena de aceite el hueco que queda entre segmento y ranura; luego es expulsado hacia la parte superior durante la subida del émbolo. El pequeño consumo de aceite que se produce puede llegar a ser excesivo cuando los segmentos están desgastados o la holgura de montaje es excesiva.

Los segmentos deben moverse en sus cajeras libremente con una holgura axial suficiente para que pueda absorber la dilatación térmica. También es necesario una abertura entre puntas para asegurar en todo momento una presión radial del segmento sobre las paredes del cilindro independientemente de las dilataciones y el desgaste de los motores a medida que acumulan una gran cantidad de kilómetros.


Segmento de engrase
Los segmentos de engrase también llamado segmento "rascador", van situados por debajo de los de compresión, tienen la misión de barrer, durante el descenso del émbolo, el exceso de aceite depositado sobre la pared del cilindro, permitiendo, dentro de unos limites, su paso a la parte alta del mismo. El aceite que no es arrastrado por el segmento de engrase es recogido por los segmentos de compresión, y una mínima cantidad pasa a lubricar la zona alta del cilindro.
Los segmentos de engrase suelen ir provistos de un muelle expansor que asegura el contacto continuo con el cilindro.
Características de los segmentos
Los segmentos durante el funcionamiento del motor están sometidos a fuertes desgastes por rozamiento y a elevadas temperaturas, por tanto, deben reunir unas características especiales en cuanto a forma, dimensiones y calidad de material, que les permita cumplir la misión encomendada.
El material empleado para la fabricación de segmentos debe tener una dureza suficiente para evitar un desgaste prematuro, pero no excesiva, para no ocasionar desgastes en el cilindro. Por otra parte han de poseer una estructura lo suficientemente elástica, para mantener la presión necesaria sobre la pared del cilindro y asegurar así la estanqueidad.
En la fabricación de segmentos se utiliza la fundición de hierro aleada con ligeras proporciones de Si, Ni, y Mn, con una estructura perlítica de grado fino obtenida por colada centrífuga. Para mejorar el comportamiento del segmento en la fricción, se le somete a un tratamiento de fosfatación. Con este tratamiento se consigue formar una capa porosa que se impregna de aceite, lo que ayuda a mejorar las condiciones de rozamiento, con una elevada reducción del desgaste.
A los segmentos de fuego en particular se les da un tratamiento de cromado para que puedan soportar las condiciones extremas a las que trabajan.

Tipos de segmentos según su forma y características (figura inferior):
  • Segmento cilíndrico de sección rectangular (A)
    Se utiliza como segmento de fuego, al cual se le da un revestimiento de cromo con un espesor de 0,06 a 1 mm, según las características del motor. Presenta gran superficie de contacto que facilita la estanqueidad y la evacuación del calor.

  • Segmento cónico (B)
    Se emplea como segmento de compresión y se sitúa debajo del segmento de fuego. Su forma acelera el asiento circular durante el rodaje como consecuencia de su conicidad. La cara superior debe venir marcada para no invertir su posición en el montaje ya que, en este caso, aumentaría considerablemente el paso de aceite.

  • Segmento de torsión (C)
    Este tipo de segmento conserva su forma cilíndrica en la parte exterior o superficie de asiento, pero tiene una cierta conocidad en la parte interior. A cada variación de sentido del émbolo tiende a bascular en su ranura, lo cual aumente la estanqueidad durante la carrera de ascenso y durante el descenso hace las veces de segmento rascador.
  • Segmento trapecial (D y E)
    Se utiliza en motores con elevada temperatura interna, como en los Diesel. La menor dimensión de la cara interna, debido a la forma trapecial, les permite bascular en ambos sentidos y evita que se queden clavados en la ranura por efecto de la mayor dilatación en esa zona. Se utiliza como segmento de fuego.

  • Segmento con expansor (F)
    Conserva las características de fundición en cuanto a la cara de deslizamiento, pero lleva sobre el fondo del alojamiento un resorte de banda de acero que le permite aumentar la presión superficial sobre el cilindro.

  • Segmentos recogedores de aceite (tipo G y H)
    Se emplean como segmentos de engrase. Tienen forma de U, con unos orificios o ranuras centrales a través de las cuales pasa el aceite al interior del pistón para su retorno al cárter. La forma de los labios puede ser recta (G) o en forma de bisel (H).

  • Aro compuesto (I)
    Se emplea también como segmento de engrase. Esta formado por una arandela guía (1) a cada lado del segmento, un espaciador hueco (2) y un expansor (3) de lámina de acero.


Biela
La biela se encarga de unir el pistón con el cigüeñal. La función de la biela es transmitir la fuerza recibida por el pistón en la combustión hasta el cigüeñal.
Se trata de una pieza de suma importancia, tanto para la transmisión de potencia, como para la transformación del movimiento. Durante su funcionamiento está sometida a esfuerzos de tracción, compresión y flexión por pandeo. Debe tener una longitud que guarde relación directa con el radio de giro de la muñequilla del cigüeñal y la magnitud de los esfuerzos a transmitir. Tiene que ser lo suficientemente robusta para que soporte las solicitaciones mecánicas que se originan.
Material empleado en su fabricación
El material empleado en su fabricación es el acero al carbono aleado con Ni y Cr, con un tratamiento adecuado para obtener las elevadas características mecánicas que se precisan. Se fabrica por estampación en caliente y se mecanizan las zonas de amarre al émbolo y al cigüeñal, así como los elementos de unión y los pasos de aceite.
Las condiciones exigidas en la fabricación de las bielas para su correcto funcionamiento destacan:
  • Igualdad de peso para cada grupo de bielas de un mismo motor.
  • Paralelismo entre ejes de simetría.
  • Precisión en la longitud o distancia entre centros.
Partes y características constructivas de una biela
Las características constructivas de la biela, en cuanto a forma y dimensiones, están en función del trabajo a desarrollar.
En una biela hay que distinguir las siguientes parte:
  • Pie de biela.
  • Cabeza de biela.
  • Perno de unión.
  • Cuerpo de la biela.

Pie de biela
Es la parte alta de la biela, por donde ésta se une al émbolo mediante un pasador o bulón. Trabaja, por tanto, bajo carga alternativa y oscilante, lo que produce un fuerte desgaste en las zonas superior e inferior del diámetro. Para reducir este desgaste se coloca un cojinete de antifricción entre el bulón y el alojamiento de la biela.
El diámetro interior de este alojamiento (d1) viene determinado por las condiciones de engrase, de forma que éste se realice en perfectas condiciones bajo carga, sin que se rebase el limite de fatiga del material.
Las demás dimensiones del pie de la biela dependen del diseño y posterior mecanizado de la misma, siempre orientado a reducir al máximo su peso. La anchura (A) del biela suele tener un valor aproximadamente igual a la mitad del diámetro del émbolo. En la parte superior exterior suele llevar una especie de cresta o saliente, que confiere rigidez al conjunto y es donde suele ir situado el taladro de engrase para las bielas con montaje de bulón flotante.


Cabeza de biela
Esta parte de la biela es por donde se una a la muñequilla del cigüeñal. Para facilitar el montaje se divide en dos partes. La parte llamada semicabeza va unida directamente al cuerpo de la biela y la otra, llamada sombrerete, queda unida a la biela a través de unos pernos.
En la superficie de unión de ambas piezas hay una serie de estrías de anclaje para asegurar un posicionado correcto y para dar resistencia a la unión, ya que esta sometida a cizallamiento. Otros modelos de bielas llevan el asiento totalmente plano y la posición se determina par medio de dos números marcados en la biela y el sombrerete.
Para determinar la anchura (B) y diámetro exterior (d4) se suelen tomar valores que están en función del diseño y resistencia del material.
El plano de unión entre el sombrerete y la biela puede ser horizontal o inclinado. Esta ultima disposición se utiliza cuando las dimensiones de la cabeza son grandes, con objeto de facilitar su extracción a través del cilindro, o también para reforzar la zona de mayor empuje cuando la cargas son elevadas, debiendo coincidir en su montaje, el menor ángulo de inclinación por la parte por donde baja la biela.

Los pernos (tornillos) que unen el sombrerete a la biela, deben fabricarse de material resistente para que soporten los esfuerzos de tracción y cizalladura a que están sometidos durante su trabajo. Su tamaño y disposición debe facilitar su montaje y desmontaje. Deben permanecer inmóviles, para eso en los tornillos pasantes se suele practicar un chaflán sobre la cabeza para sirva de tope en su asiento, o también se dispone una chapa de freno en los tornillos que van roscados a la parte fija de la biela.
Cuerpo de la biela
Constituye el elemento de unión entre el pie y la cabeza de la biela. Su perfil o sección es de doble T, ya que es la forma constructiva que proporciona mayor resistencia con una menor sección y, al mismo tiempo, es de fácil estampación.
La longitud de la biela es otra de las característica importantes y depende del tipo de motor, de la relación carrera-calibre y del ciclo de funcionamiento del motor. El numero de revoluciones del motor influye sobre la longitud de la biela, en motores mas revolucionados la longitud de la biela se acorta dentro de unos limites admisibles, con el fin de evitar, en lo posible, los efectos de la inercia.

Bielas para motores en "V"

Las bielas empleadas en estos motores, cuya unión al cigüeñal se realiza de una forma especial, suelen ser de tres tipos:
  • Bielas ahorquilladas
  • Bielas articuladas
  • Bielas conjugadas
Bielas ahorquilladas
Este sistema emplea un casquillo común para unir las dos bielas que trabajan sobre el mismo codo del cigüeñal. El casquillo va montado fijo en la biela principal y hace de bulón en la biela secundaria que tiene dos cabezas.
Las ventajas de este sistema consisten en que se aprovecha al máximo el casquillo de unión y las carreras se realizan perfectamente, sin que se produzcan esfuerzos adicionales. Tienen el inconveniente de su elevado costo y que el cojinete de unión soporta mayores esfuerzos, ya que tiene que sufrir los efectos de inercia y las cargas de ambas bielas.

Bielas articuladas
Este tipo realiza la articulación de la biela secundaria en la parte lateral de la biela principal. Emplea un cojinete único para ambas bielas y su construcción es más sencilla y económica. Por el contrario, en este montaje son mayores los esfuerzos laterales que se producen en el émbolo, como consecuencia de la posición de los ejes de las bielas y también lo son las flexiones a que esta sometida la biela principal debido al empuje que sobre ella realiza la biela secundaria.

Bielas conjugadas
Este tipo de biela es el mas empleado en la actualidad para motores en V. Se caracterizan por ser iguales e independientes en su funcionamiento y se articulan sobre la misma muñequilla del cigüeñal.
Tienen el inconveniente del rozamiento lateral que se produce entre ambas bielas, por lo que requieren un tratamiento especial en esa zona para que el desgaste sea mínimo.


Bulón
La unión de la biela con el émbolo se realiza a través de un pasador o bulón, el cual permite la articulación de la biela y soporta los esfuerzos a que está sometido aquel. Debe tener una estructura robusta y a la vez ligera para eliminar peso.
Estos bulones se fabrican generalmente huecos, en acero de cementación. El diámetro exterior del émbolo es aproximadamente el 40% del diámetro del émbolo o pistón.
Montaje según la forma de unión
Según la forma de unión de la biela con el émbolo se distinguen cuatro tipos de montaje:
  • Bulón fijo al émbolo.
  • Bulón fijo a la biela.
  • Bulón flotante
  • Bulón desplazado
Bulón fijo al émbolo
En esta forma de montaje el bulón queda unido al émbolo a través de un tornillo pasador o chaveta, mediante los cuales se asegura la inmobilización del bulón. La unión bulón-biela se realiza por medio de un cojinete de antifricción.


Bulón fijo a biela
En este tipo de montaje, la biela se fija al bulón a través de un tornillo de cierre. En este caso, el bulón gira sobre su alojamiento en el émbolo.

Bulón flotante
En este sistema el bulón (3) queda libre tanto de la biela (2) como del émbolo (1). Es el sistema mas empleado en la actualidad pues, además de un fácil montaje, tiene la ventaja de repartir las cargas de rozamientos entre ambos elementos.
La unión con la biela se realiza a través de un cojinete antifricción (4). El bulón se monta en el émbolo, en frío, con una ligera presión, de forma que al dilatarse queda libre.
Para mantener el bulón en su posición de montaje y evitar que pueda desplazarse lateralmente, en unas ranuras (5) practicadas sobre el alojamiento del émbolo se monta unos anillos elásticos (6) cuyas medidas están normalizadas.

Bulón desplazado
En motores que soportan grandes esfuerzos laterales se suele montar el bulón en el émbolo ligeramente desplazado hacia el lado sometido a mayor presión, con el fin de equilibrar los esfuerzos laterales y mantener alineado al émbolo en su desplazamiento. Con este sistema se reduce el desgaste en esa zona del cilindro.

El rozamiento del pistón con el cilindro no es todo lo regular que podría desearse y, así, ocurre que, en la carrera de explosión, el esfuerzo F (figura inferior) transmitido al pistón, no pasa en su totalidad a la biela, sino que se descompone en los esfuerzos A y B, como se aprecia en la figura, resultando que una gran parte se pierde en frotamiento del pistón contra la pared del cilindro. Vemos, por tanto, que el pistón esta sometido a un empuje lateral, que produce un fuerte rozamiento contra la pared del cilindro, lo que provoca un mayor desgaste en esta zona. En las carreras ascendentes, la biela empuja al pistón haciendole subir y esté empuje C se descompone, actuando una fuerza D en el sentido vertical ascendente, que hace subir el pistón, y otra fuerza E que aplica al pistón contra la pared. El rozamiento, por lo tanto, es mayor cuando el pistón desciende empujado por la explosión y es menor cuando el pistón asciende empujado solamente por la inercia del cigüeñal.

Debido a estos rozamientos, el desgaste de las paredes del cilindro es irregular, acentuadose más en el eje perpendicular al bulón. Para igualar la presión lateral y rozamiento del pistón, se recurre en la actualidad en mucho vehículos a desplazar el eje del bulón como hemos dicho anteriormente, quedando descentrado hacia el lado por donde baja la biela. Con este sistema se consigue que las presiones que actúan sobre cabeza del pistón, al estar desigualmente repartidas a ambos lados del eje, mantengan el pistón alineado en todo momento y así se reduzca el rozamiento contra la pared izquierda de la figura que es la que sufre mayor desgaste.


Cigüeñal
El cigüeñal es la pieza que recoge el esfuerzo de la explosión y lo convierte en par motor a determinadas revoluciones. Es el encargado de transformar el movimiento alternativo de los pistones en un movimiento rotativo. El cigüeñal también transmite el giro y fuerza motriz a los demás órganos de transmisión acoplados al mismo.

El cigüeñal esta constituido por un árbol acodado, con unos muñones (A) de apoyo alineados respecto al eje de giro. Dichos muñones se apoyan en los cojinetes de la bancada del bloque.
Durante su trabajo, el cigüeñal se calienta y sufre una dilatación axial; por esta razón las muñequillas de apoyo se construyen con un pequeño juego lateral, calculado en función de la dilatación térmica del material.
En los codos del árbol se mecanizan unas muñequillas (B), situadas excéntricamente respecto al eje del cigüeñal, sobre las que se montan las cabezas de las bielas.
Los brazos que unen las muñequillas se prolongan en unos contrapesos (H), cuya misión es equilibrar el momento de giro y compensar los efectos de la fuerza centrífuga, evitando las vibraciones producidas en el giro y las deformaciones torsionales. En la parte posterior del eje va situado el plato de amarre (D) para el acoplamiento del volante de inercia.
El cigüeñal tiene una serie de orificios (I) que se comunican entre sí y con los taladros de engrase (L), situados en las muñequillas y muñones. La misión de estos conductos es hacer circular el aceite de engrase para la lubricación de los cojinetes, tanto en los apoyos como en las muñequillas, y expulsar el sobrante al cárter.
En (E) existe un orificio con casquillo de bronce, donde se apoya el eje primario de la caja de cambios, sobre el eje se monta el embrague. En (F) se monta un piñón por mediación de un chavetero o rosca, del que se saca movimiento para el árbol de levas. En (G) se monta una polea, también por mediación de un chavetero, que da movimiento generalmente a la bomba de agua
Equilibrado estático y dinámico del cigüeñal
  • Equilibrado estático
    Consiste en disponer toda su masa perfectamente repartida con relación al eje de rotación, de forma que el cigüeñal, situado sobre los apoyos de la bancada, quede en reposo cualquiera que sea su posición. Para que esto ocurra, el peso de las muñequillas debe estar perfectamente compensado con los contrapesos, ya que entonces las fuerzas laterales quedan equilibradas, tanto en reposo como en movimiento, produciendo un par de rotación uniforme.
    El equilibrado se efectúa en una máquina especial llamada equilibradora dinámica. El equilibrado se consigue suprimiendo material de la zona más pesada por medio de vaciados en los contrapesos o aplicando una pasta especial (mastic) en la zona necesaria, hasta conseguir que toda su masa quede uniforme.

  • Equilibrado dinámico
    El equilibrado dinámico se consigue con el correcto diseño de las muñequillas del cigüeñal, de forma que las fuerzas centrífugas o momentos dinámicos que actúan sobre ellas en el giro, con respecto a cualquiera de los puntos de apoyo, se compensen y su resultante sea nula.
El cigüeñal se equilibra después de su mecanizado mediante maquinas especiales. La operación se realiza al eliminar material de los contrapesos hasta conseguir el equilibrio. El volante de inercia también se equilibra por separado y a continuación conjuntamente con el cigüeñal.
La falta de equilibrio provoca fuertes cargas sobre los cojinetes de apoyo y vibraciones que se transmiten a la carrocería.
Vibraciones en el cigüeñal
Las vibraciones en el cigüeñal se pueden producir, bien por el desequilibrado del cigüeñal, bien por las fuerzas que actúan sobre él.
Cuando el pistón se halla en el PMS, la biela y el codo del cigüeñal forman una linea recta (Fig. 1). En esta posición la fuerza (Fe) actúa de forma radial sobre la muñequilla del cigüeñal y, por tanto, no produce momento de giro. Si el cigüeñal sigue girando (Fig. 2), aparece un momento de giro cuando la biela toma un cierto ángulo y actúa la fuerza de empuje en el codo o brazo de palanca e impulsa el cigüeñal. El brazo de palanca eficaz varia según el ángulo del cigüeñal y produce un momento de giro irregular; estas irregularidades las compensa precisamente el volante de inercia.
La fuerza de empuje (Fe) que actúa sobre la muñequilla del cigüeñal se descompone en otras dos que forman entre si, un ángulo recto y que actúan como se indica (Fig. 4). La fuerza (F1), tangencial a la sección de la muñequilla, proporciona el trabajo de giro, mientras que la otra fuerza radial (F2) actúa como presión sobre el cojinete y consume una parte de la fuerza de empuje que recibe del émbolo. Estas fuerzas varían lógicamente con la posición del brazo del cigüeñal e influyen en la marcha del motor, ocasionando un desgaste irregular en la muñequillas a causa de la carga unilateral.
En los puntos de inflexión actúan las fuerzas perpendiculares al eje del cigüeñal. La presión de la combustión que actúa sobre el cigüeñal hace que se flexione hacia abajo, pero las fuerzas de inercia actúan rápidamente en sentido contrario y restablecen el equilibrio.
Estas fuerzas se producen en cada una de las muñequillas del cigüeñal y dan origen a vibraciones relativamente importantes que repercuten negativamente en todos los órganos del motor.

El volante de inercia es otro agente productor de vibraciones, ya que su peso retarda la propulsión del cigüeñal. La presión de trabajo produce un esfuerzo de torsión sobre el cigüeñal y, en la compresión, las resistencias en el cilindro actúan de nuevo, pero de forma antagónica. La alternancia de estas fuerzas ocasiona unas vibraciones llamadas vibraciones de torsión que aparecen especialmente en el momento de arranque y en el frenado.
Estas vibraciones destruyen poco a poco la estructura del material y originan la rotura por fatiga. Para evitar estos efectos, en los motores de más de 6 cilindros, se acopla un amortiguador de vibraciones.
Cuando el motor gira a determinado numero de revoluciones, llamado número de revoluciones crítico, se suman las diversas vibraciones (resonancia) y, por este motivo se pueden producir cargas peligrosas. Cuando esto ocurre todo el vehículo vibra y esta circunstancia debe evitarse con la máxima diligencia.
Cojinetes de biela y bancada
La unión del cigüeñal a la biela y el montaje de sus apoyos sobre el cárter del bloque, se realiza a través de unos cojinetes especiales en dos mitades llamados semicojinetes de biela o bancada.

Debido a las condiciones duras de trabajo a que están sometidos deben reunir las siguientes características:
  • Resistencia al gripado, para evitar el riesgo de microsoldadura. Se emplea para ello materiales o afines con el cigüeñal.
  • Facilidad de incrustación, para que las impurezas, que se introducen con el aceite entre las superficies en contacto, se incrusten en el material del cojinete y de esta forma no dañen el cigüeñal.
  • Conformabilidad, para absorber las pequeñas deformaciones producidas en la alineación de los elementos.
  • Resistencia a la fatiga, para que soporten las cargas a que están sometidos.
  • Resistencia a la corrosión, que producen los agentes químicos que pasan al cárter procedentes de la combustión o diluidos en el aceite de engrase.
  • Gran conductibilidad térmica, para evacuar el calor producido por rozamiento en el cojinete.
Clases de aleaciones antifricción
La fabricación de este tipo de cojinetes se realiza a base de chapa de acero recubierta en su cara interna con aleación antifricción, la cual reúne las características mencionadas. Estas aleaciones, según los materiales empleados, pueden ser de varios tipos:
  • Metal blanco con estaño o plomo.
  • Bronce al cadmio.
  • Bronce al cobre.
  • Bronce al aluminio.
  • Bronce al cobre-niquel impregnado de plomo.
Estas aleaciones proporcionan un rozamiento suave y evitan el desgaste del cigüeñal. Al mismo tiempo, gracias a su bajo punto de fusión, si se calienta excesivamente por falta de engrase, el cojinete se funde y así evita el agarrotamiento del cigüeñal con los elementos de unión. Cuando se produce la fusión de una de las bielas, la holgura resultante ocasiona un golpeteo característico, que se conoce en el argot automovilístico como "biela fundida".
Montaje de los semicojinetes
Los semicojinetes se suministran con su diámetro nominal estándar y se montan fácilmente en su apoyo o soporte. La fijación se consigue mediante la tapa respectiva que los mantiene sujetos a la cabeza de la biela, debido a la presión de la tapa y al sistema de posicionamiento del casquillo.

Ranuras de engrase
La garantía de un perfecto rodaje y de la conservación de la forma geométrica y las dimensiones del orificio de un cojinete, depende en gran parte de la eficacia del sistema de engrase. Por esta razón es importante conocer la forma y situación que deben tener las ranuras y orificios de engrase del cojinete con el fin de garantizar una adecuada lubricación.

Cojinetes axiales
El cigüeñal va provisto también de cojinetes axiales que soportan los esfuerzos producidos por el accionamiento del embrague. Se disponen axialmente en ambos lados de uno de los soportes de bancada.

 
Volante de inercia
El volante de inercia es una pieza circular pesada unida al cigüeñal, cuya misión es regularizar el giro del motor mediante la fuerza de inercia que proporciona su gran masa. Su trabajo consiste en almacenar la energía cinética durante la carrera motriz y cederla a los demás tiempos pasivos del ciclo de funcionamiento.
El diseño del volante debe ser calculado, sobre todo su peso, teniendo en cuenta las características del motor. Un peso excesivo del volante se opone a una buena aceleración del motor.

El volante se fabrica en fundición gris perlitica, que se obtiene por colada en moldes y después se mecaniza en todas sus partes para equilibrar su masa. En su periferia se monta la corona de arranque en caliente y, una vez fría, queda ajustada perfectamente a presión en el volante.
El volante debe ser equilibrado independientemente y después montado con el cigüeñal para obtener en conjunto la compensación de masas.

Amortiguador de vibraciones
El amortiguador de vibraciones también llamado "damper", tiene como misión atenuar las vibraciones que se producen en la polea del cigüeñal, por causa de los esfuerzos de torsión y flexión a que está sometido, para que no se transmitan a la correa o cadena de la distribución. Estas torsiones y flexiones, se producen debido a la fuerza de las explosiones y por las inercias que tiene que soportar el cigüeñal, por el movimiento que recibe de los pistones a través de las bielas, ya que este movimiento varía con las revoluciones y la carga del motor.
Si la frecuencia de vibración torsional coincide con la frecuencia propia de torsión del cigüeñal, puede dar lugar a una resonancia, aumentando la amplitud de la vibración y provocando la rotura del cigüeñal. Para evitar esto, se pueden instalar poleas Damper o amortiguadores torsionales, en el lado de la distribución, moviendo la correa de accesorios. La idea es que estos elementos absorban la energía torsional fluctuante del cigüeñal, amortiguandola. Este tipo de amortiguadores pueden ser de dos tipos: con dos masas que se unen por un elemento de caucho o de dos masas que se mueven relativamente interponiendo un medio viscoso como silicona.

Este dispositivo esta compuesto por una masa volante cuya unión al cigüeñal no es rígida, y permite un ligero deslizamiento elástico provocado por su resistencia a la inercia, lo que amortigua las vibraciones torsionales del cigüeñal. El amortiguador de vibraciones se utiliza en motores de gran cilindrada, generalmente en motores de 6 cilindros en adelante, con arquitectura tanto en linea como en "V".
El elemento se compone de tres partes, la polea del cigüeñal, un disco amortiguador que lleva unos muelles sujetos a una placa y por último un disco de fricción. El disco de fricción va unido a la polea, y es oprimido por el disco amortiguador. Entre la polea y el disco existe un cojinete de fricción para el desplazamiento entre ambas. Y la polea une todo el conjunto por medio de unos tornillos que se sujetan a la placa del disco amortiguador y que pasan por los orificios dispuestos en el disco amortiguador.
 

UNIDAD 3

EL SISTEMA DE DISTRIBUCIÓN
El sistema de distribución es el conjunto de elementos que regulan la apertura y cierre de válvulas en el momento oportuno y a su vez la entrada de la mezcla, (gases frescos) y la salida de los gases residuales de los cilindros, en el momento adecuado después de producirse la explosión.
EL SISTEMA DE DISTRIBUCIÓN DEL AUTOMOVIL   sistema distribucion EL SISTEMA DE DISTRIBUCIÓN DEL AUTOMOVIL

Del momento en el cual se realice la apertura y cierre de las válvulas de admisión y escape, así será el correcto funcionamiento del motor (avance y retraso a la apertura y cierre de las válvulas correspondientes).
Diferentes tipos de cámaras de compresión
Las cámaras de compresión se clasifican por su forma geométrica. La forma de las cámaras de compresión es fundamental en el rendimiento y en la potencia del motor.
La forma de la cámara viene impuesta por la disposición y tamaño, tanto de las bujías como de las válvulas.
A continuación se representa algunos tipos de cámara de compresión más utilizadas.
• Cámara cilíndrica
Es muy utilizada, por su sencillez en el diseño, y el buen funcionamiento producido por la proximidad de la chispa al punto de máximo aprovechamiento. Son económicas.
• Cámara de bañera y en cuña
Se fabrican generalmente con válvulas en la culata y la bujía se sitúa lateralmente. Tienen la ventaja de que el recorrido de la chispa es muy corto y reduce el exceso de turbulencia del gas. Produce, a la entrada de los gases, un soplado sobre la cabeza del émbolo que reduce el picado de bielas.
• Cámara hemisférica
Por su simetría, acorta la distancia que debe recorrer la llama desde la bujía hasta la cabeza del pistón, consiguiéndose una buena combustión.
Es la más próxima a la forma ideal.
Permite montar válvulas de grandes dimensiones así como, un mejor llenado de los cilindros.
Elementos del sistema de distribución
Los elementos principales de la distribución son: árbol de levas, engranaje de mando, y las válvulas con sus muelles.
Se clasifican, de acuerdo con su función en:
• Elementos interiores
o Válvula de admisión
o Válvulas de escape
• Elementos de exteriores
o Árbol de levas.
o Elementos de mando.
o Taqués.
o Balancines
• Elementos interiores
Estos elementos son las válvulas de admisión y las válvulas de escape.
Válvulas
Son las encargadas de abrir o cerrar los orificios de entrada de mezcla o salida de gases quemados en los cilindros.
En cada válvula , se distinguen dos partes: cabeza y cola . La cabeza, que tiene forma de seta, es la que actúa como verdadera válvula, pues es la que cierra o abre los orificios de admisión o escape. La cola o vástago, (prolongación de la cabeza) es la que, deslizándose dentro de una guía , recibirá en su extremo opuesto a la cabeza el impulso para abrir la válvula.
Las válvulas se refrigeran por la guías, principalmente, y por la cabeza.
Las válvulas que más se deterioran son las de escape, debido a las altas temperaturas que tienen que soportar 1000º C.
Algunas válvulas, sobre todo las de escape, se refrigeran interiormente con sodio .
Debe tener una buena resistencia a la fatiga y al desgaste (choques).
Debe presentar igualmente una buena conductividad térmica (el calor dilata las válvulas) y buenas propiedades de deslizamiento.
La cabeza o tulipa de admisión es de mayor diámetro que la de escape, para facilitar el llenado.
Muelles ( y )
Las válvulas se mantienen cerradas sobre sus asientos por la acción de un resorte (muelle) .
Los muelles deben tener la suficiente fuerza y elasticidad para evitar rebotes y mantener el contacto con los elementos de mando.
o Debe asegurar la misión de la válvula y mantenerla plana sobre su asiento.
o El número de muelles puede ser simple o doble.
Guías de válvula ( y )
Debido a las altas velocidades, el sistema de distribución es accionado muchas veces en cortos periodos de tiempo. Para evitar un desgaste prematuro de los orificios practicados en la culata por donde se mueven los vástagos de las válvulas y puesto que se emplean aleaciones ligeras en la fabricación de la culata, se dotan a dichos orificios de unos casquillos de guiado G, llamados guías de válvula, resistentes al desgaste y se montan, generalmente, a presión en la culata.
Las guías permiten que la válvula quede bien centrada y guiada.
La guía de válvula debe permitir un buen deslizamiento de la cola de la válvula, sin rozamiento.
Si existiera demasiada holgura entre la guía y el cuerpo de una válvula de admisión, entraría aceite en la cámara de compresión, debido a la succión del pistón, produciendo un exceso de carbonilla en dicha cámara, y si fuera en una válvula de escape, el aceite se expulsará por el tubo de escape.
Asientos de válvulas
Son unos arillos postizos colocados a presión sobre la culata para evitar el deterioro de ésta, por el contacto con un material duro como el de la válvula, su golpeteo, y a la corrosión debido a los gases quemados.
El montaje de los asientos se hace a presión mediante un ajuste (frío-calor), y cuando estén deteriorados se pueden sustituir.
• Elementos exteriores
Son el conjunto de mecanismos que sirven de mando entre el cigüeñal y las válvulas. Estos elementos son: árbol de levas, elementos de mando, empujadores o taqués y balancines. Según el sistema empleado, los motores a veces carecen de algunos de estos elementos.
Árbol de levas
Es un eje que controla la apertura de las válvulas y permite su cierre. Tiene distribuidas a lo largo del mismo una serie de levas , en número igual al número de válvulas que tenga el motor.
0
El árbol de levas o árbol de la distribución, recibe el movimiento del cigüeñal a través de un sistema de engranajes . La velocidad de giro del árbol de levas ha de ser menor, concretamente la mitad que la del cigüeñal, de manera que por cada dos vueltas al cigüeñal (ciclo completo) el árbol de levas dé una sola vuelta. Así, el engranaje del árbol de levas, tiene un número de dientes doble que el del cigüeñal.
El árbol de levas lleva otro engranaje , que sirve para hacer funcionar por la parte inferior a la bomba de engrase, y por la parte superior al eje del distribuidor. Además tiene una excéntrica para la bomba de combustible en muchos casos.
Según los tipos de motores y sus utilizaciones, las levas tienen formas y colocaciones diferentes.
En la 0 se representa dos tipos de árbol de levas:
o Detalle B: con engranaje para accionar la bomba de aceite y distribuidor.
o Detalle A: con excéntrica para la bomba de combustible.
En la 1, se representa el perfil de la leva y las correspondientes fases que se realiza durante su giro.
1
Elementos de mando
El sistema de mando está constituido por un piñón del cigüeñal, colocado en el extremo opuesto al volante motor y por otro piñón que lleva el árbol de levas en uno de sus extremos, que gira solidario con aquél.
En los motores diesel se aprovecha el engranaje de mando para dar movimiento, generalmente, a la bomba inyectora.
El acoplamiento entre ambos piñones se puede realizar por alguno de los tres sistemas siguientes:
Transmisión por ruedas dentadas
Cuando el cigüeñal y el árbol de levas se encuentran muy separados , de manera que no es posible unirlos de forma directa, se puede emplear un mecanismo consistente en una serie de ruedas dentadas en toma constante entre sí para transmitir el movimiento.
2
Los dientes de los piñones pueden ser rectos, éstos son ruidosos y de corta duración o en ángulo helicoidales bañados en aceite en un cárter o tapa de distribución, siendo éstos de una mayor duración.
En el caso de dos ruedas dentadas , el cigüeñal y el árbol de levas giran en sentido contrario y, si son tres, giran el cigüeñal y árbol de levas en el mismo sentido.
3
Transmisión por cadena
Igual que en el caso anterior, este método se utiliza cuando el cigüeñal y el árbol de levas están muy distanciados. Aquí se enlazan ambos engranajes mediante una cadena.
Para que el ajuste de la cadena sea siempre el correcto, dispone de un tensor consistente en un piñón o un patín pequeño, generalmente de fibra, situado a mitad del recorrido y conectado a un muelle, que mantiene la tensión requerida.
En este sistema se disminuye el desgaste y los ruidos al no estar en contacto los dientes. Es poco ruidoso.
4
Transmisión por correa dentada
El principio es el mismo que el del mando por cadena, sólo que en este caso se utiliza una correa dentada de neopreno que ofrece como ventaja un engranaje más silencioso, menor peso y un coste más reducido, lo que hace más económico su sustitución.
Es el sistema más utilizado actualmente, aunque la vida de la correa dentada es mucho menor que el de los otros sistemas. Si se rompiese ésta, el motor sufriría grandes consecuencias. Estos piñones se encuentran fuera del motor, por lo que es un sistema que no necesita engrase, pero sí la verificación del estado y tensado de la correa.
En la figura , indica los tornillos para el tensado de la correa.
5
Taqués
Son elementos que se interponen entre la leva y el elemento que estas accionan. Su misión es aumentar la superficie de contacto entre estos elementos y la leva. Los taqués , han de ser muy duros para soportar el empuje de las levas y vencer la resistencia de los muelles de las válvulas.
Para alargar la vida útil de los taqués, se les posiciona de tal manera, que durante su funcionamiento realicen un movimiento de rotación sobre su eje geométrico.
Los taqués siempre están engrasados por su proximidad al árbol de levas.
La ligereza es una cualidad necesaria para reducir los efectos de inercia.

6
Taqués hidráulicos
Los taqués hidráulicos funcionan en un baño de aceite y son abastecidos de lubricante del circuito del sistema de engrase del motor.
Los empujadores o taqués se ajustan automáticamente para adaptarse a las variaciones en la longitud del vástago de las válvulas a diferentes temperaturas. Carecen de reglaje. Las ventajas más importantes de este sistema son su silencioso funcionamiento y su gran fiabilidad.
7
Varilla empujadora
No existen en los motores que llevan árbol de levas en cabeza.
Las varillas van colocadas entre los balancines y los taqués .
Tienen la misión de transmitir a los balancines el movimiento originado por las levas .
Las varillas empujadoras:
o Son macizas o huecas, en acero o aleación ligera.
o Sus dimensiones se reducen al máximo para que tengan una débil inercia y al mismo tiempo una buena resistencia a las deformaciones.
o El lado del taqué tiene forma esférica.
o El lado del balancín tiene una forma cóncava que permite recibir el tornillo de reglaje.
8
Balancines ( 9 y 0)
Son unas palancas que oscilan alrededor de un eje (eje de balancines), que se encuentra colocado entre las válvulas y las varillas de los balancines (o bien entre las válvulas y las levas, en el caso de un árbol de levas en cabeza).
Los balancines son de acero. Oscilan alrededor de un eje hueco en cuyo interior circula aceite a presión. Este eje va taladrado para permitir la lubricación del balancín.
La misión de los balancines es la de mandar la apertura y el cierre de la válvula.
Se distinguen dos tipos de balancines:
o Balancines oscilantes.
o Balancines basculante.
Balancines oscilantes
Lo utilizan los motores con árbol de levas en cabeza. El eje de giro pasa por un extremo del balancín. Se le conoce también con el nombre de “semibalancín”. Recibe el movimiento directo del árbol de levas y lo transmite al vástago de la válvula a través de su extremo libre.
9
Balancines basculantes
Lo utilizan los motores con árbol de levas laterales.
Las válvulas van en cabeza. El eje de giro pasa por el centro del balancín. Uno de sus extremos recibe el movimiento de la varilla empujadora y lo transmite al vástago de la válvula por el otro extremo.
0
Sistemas de distribución
Se clasifican según el emplazamiento del árbol de levas:
o Árbol de levas en bloque o lateral.
o Árbol de levas en la culata o cabeza.
Las válvulas generalmente, van colocadas en la culata. En algunos motores se utilizan válvulas laterales (sistema SV), pero está en desuso.
• Árbol de levas en el bloque (sistema OHV)
Es un sistema muy utilizado en motores diesel de medianas y grandes cilindradas. En los turismos, debido a las revoluciones que alcanzan estos motores cada vez se emplean menos. Esto es como consecuencia de las fuerzas de inercia creadas en los elementos que tienen movimientos alternativos.
Funcionamiento
El cigüeñal le da movimiento al árbol de levas y éste acciona el taqué , en el cual está apoyada la varilla . Al ser accionada la varilla se levanta y acciona la cola del balancín (basculante) que al girar sobre el eje de balancines hace que éste actúe sobre la cola de la válvula , venciendo la acción del muelle , abriendo el orificio correspondiente. Al desaparecer la acción de la leva, el muelle recupera su longitud inicial y la válvula cierra el orificio, al permitirlo la leva.
1
• Árbol de levas en la culata (OHC)
Es el sistema más utilizado. El accionamiento de las válvulas es o bien directo o a través de algún órgano. Esto hace que lo utilicen los motores que alcanzan un elevado número de revoluciones, aunque el mando es más delicado.
El accionamiento puede ser:
o Directo.
o Indirecto.
Sistema OHC de accionamiento directo
Es un sistema que lleva pocos elementos. Se emplea para motores revolucionados. La transmisión entre el cigüeñal y árbol de levas se suele hacer a través de correa dentada de neopreno. Utiliza cámara de compresión tipo hemisférica, empleándose con mucha frecuencia tres o cuatro válvulas por cilindro. Estos sistemas presentan el problema de que la culata es de difícil diseño.
Puede llevar uno o dos árboles de leva en la culata, llamado sistema DOHC, si son dos árboles de levas.
2
Sistema OHC de accionamiento indirecto
Este sistema prácticamente es igual que el anterior, con la única diferencia de que el árbol de levas , acciona un semibalancín , colocado entre la leva y la cola de la válvula .
El funcionamiento es muy parecido al sistema de accionamiento directo.
Al girar la leva, empuja el semibalancín, que entra en contacto con la cola de la válvula, produciendo la apertura de ésta.

Reglajes
Como consecuencia de la temperatura en los elementos de la distribución, estos elementos se dilatan durante su funcionamiento por lo que hay que dotarles de un cierto juego en frío (separación entre piezas que permita su dilatación).
Aunque la razón principal de dar este juego (holgura de taqués) es que determinan las cotas de la distribución, es importante no olvidar los efectos de la dilatación en la válvula.
Esta holgura con el funcionamiento, tiende a reducirse o aumentarse (dependiendo del sistema empleado), por lo que cada cierto tiempo hay que volver a ajustarlos pues de lo contrario las válvulas no cerrarán ni abrirán correctamente. Esta holgura viene determinada por el fabricante y siguiendo sus instrucciones.
Esta comprobación hay que realizarla cuando la válvula está completamente cerrada. En un sistema OHV el juego del taqués se mide entre el vástago de la válvula y el extremo del balancín .
En el sistema de distribución OHC de accionamiento directo, el reglaje de taqués se hace colocando en el interior del taqué, más o menos láminas de acero .
En el sistema de distribución OHC de accionamiento indirecto el reglaje de taqués se hace actuando sobre los tornillos de ajuste y contratuerca . El reglaje se hará siempre con el motor en frío y como se dijo anteriormente, su valor, depende del fabricante.
Un juego de taqués grande provoca que, la válvula no abra del todo el orificio correspondiente, con lo que los gases no pasarán en toda su magnitud. Un juego de taqués pequeño provoca que la válvula esté más tiempo abierta incluso no llegue a cerrar si no existe holgura, no pudiéndose conseguir una buena compresión y pudiéndose fundir la válvula en la parte de su cabeza (válvula descabezada) dando lugar a producirse grandes averías en el interior del cilindro y de la culata.

UNIDAD 4




 

Lubricante

 

Saltar a: navegación, búsqueda
Un lubricante es una sustancia que, colocada entre dos piezas móviles, no se degrada, y forma así mismo una película que impide su contacto, permitiendo su movimiento incluso a elevadas temperaturas y presiones.
Una segunda definición es que el lubricante es una sustancia (gaseosa, líquida o sólida) que reemplaza una fricción entre dos piezas en movimiento relativo por la fricción interna de sus moléculas, que es mucho menor.
En el caso de lubricantes gaseosos, se puede considerar una corriente de aire a presión que separe dos piezas en movimiento, en el caso de los líquidos, los más conocidos son los aceites lubricantes que se emplean, por ejemplo, en los motores. Los lubricantes sólidos son, por ejemplo, el disulfuro de molibdeno (MoS2), la mica y el grafito.

Contenido

Tipos

Existen distintas sustancias lubricantes dependiendo de su composición y presentación:
De base (origen) mineral o vegetal. Son necesarios para la lubricación hidrodinámica y son usados comunmente en la industria, motores y como lubricantes de perforación.
Son las denominadas "Grasas". Su composición puede ser mineral, vegetal o animal y frecuentemente son combinadas con lubricantes sólidos como el Grafito, Molibdeno o Litio.
Es un tipo de material que ofrece mínima resistencia molecular interna por lo que por su composición ofrece optimas condiciones de lubricación sin necesidad de un aporte lubricante líquido o semisólido. El más común es el Grafito aunque la industria está avanzando en investigación en materiales de origen metálico.

Descripción

El lubricante es una sustancia que introducida entre dos superficies móviles reduce la fricción entre ellas, facilitando el movimiento y reduciendo el desgaste.
El lubricante cumple variadas funciones dentro de una máquina o motor, entre ellas disuelve y transporta al filtro las partículas fruto de la combustión y el desgaste, distribuye la temperatura desde la parte inferior a la superior actuando como un refrigerante, evita la corrosión por óxido en las partes del motor o máquina, evita la condensación de vapor de agua y sella actuando como una junta determinados componentes.
La propiedad del lubricante de reducir la friccion entre partes se conoce como Lubricación y la ciencia que la estudia es la tribología.
Un lubricante se compone de una base, que puede ser mineral o sintética y un conjunto de aditivos que le confieren sus propiedades y determinan sus características.
Cuanto mejor sea la base menos aditivos necesitará, sin embargo se necesita una perfecta comunión entre estos aditivos y la base, pues sin ellos la base tendría unas condiciones de lubricación mínimas.

Los lubricantes se clasifican segun su base como:

Mineral.

Sintético.

Lubricante mineral

Es el más usado y barato de las bases parafínicas. Se obtiene tras la destilación del barril de crudo despues del gasoleo y antes que el alquitrán, comportando un 50% del total del barril, este hecho así como su precio hacen que sea el más utilizado.
Existen dos tipos de lubricantes minerales clasificados por la industria, grupo 1 y grupo 2 atendiendo a razones de calidad y pureza predominando el grupo 1. Es una base de bajo indice de viscosidad natural (SAE 15) por lo que necesita de gran cantidad de aditivaje para ofrecer unas buenas condiciones de lubricación. El origen del lubricante mineral por lo tanto es orgánico, puesto que proviene del petroleo.
Los lubricantes minerales obtenidos por destilación del petróleo son fuertemente aditivados para poder:
1. Soportar diversas condiciones de trabajo
2. Lubricar a altas temperaturas
3. Permanecer estable en un amplio rango de temperatura
4. Tener la capacidad de mezclarse adecuadamente con el refrigerante (visibilidad)
5. Tener un índice de viscosidad alto.
6. Tener higroscopicidad definida como la capacidad de retener humedad.


Lubricante sintético

Es una base artificial y por lo tanto del orden de 3 a 5 veces mas costosa de producir que la base mineral. Se fabrica en laboratorio y puede o no provenir del petróleo. Poseen unas excelentes propiedades de estabilidad térmica y resistencia a la oxidación,así como un elevado índice de viscosidad natural (SAE 30). Poseen un coeficiente de tracción muy bajo, con lo cual se obtiene una buena reducción en el consumo de energía.

Existen varios tipos de lubricantes sintéticos:
1.- HIDROCRACK o grupo 3
2.- PAO o grupo 4
3.- PIB o grupo 5
4.- ESTER
1.- Hidrocrack. Es una base sintética de procedencia organica que se obtiene de la hidrogenización de la base mineral mediante el proceso de hidrocracking. Es el lubricante sintético mas utilizado por las compañías petroleras debido a su bajo costo en referencia a otras bases sintéticas y a su excedente de base mineral procedente de la destilación del crudo para la obtencion de combustibles fósiles.
2.- PAO. Es una base sintética de procedencia orgánica pero mas elaborada que el hidrocrack, que añade un compuesto químico a nivel molecular denominado Poli-Alfaolefinas que le confieren una elevada resistencia a la temperatura y muy poca volatilidad (evaporación).
3.- PIB. Es una base sintética creada para la eliminación de humo en el lubricante por mezcla en motores de 2 tiempos. Se denomina Poli-isobutileno.
4.- ESTER. Es una base sintética que no deriva del petroleo sino de la reacción de un acido graso con un alcohol. Es la base sintética mas costosa de elaborar porque en su fabricación por "corte" natural se rechazan 2 de cada 5 producciones. Se usa principalmente en aeronáutica donde sus propiedades de resistencia a la temperatura extrema que comprenden desde -68ºC a +325ºC y la polaridad que permite al lubricante adherirse a las partes metálicas debido a que en su generación adquiere carga electromagnética, hacen de esta base la reina de las bases en cuanto a lubricantes líquidos. El ester es comunmente empleado en lubricantes de automoción en competición.

Aditivos de los lubricantes

La base de un lubricante por sí sola no ofrece toda la protección que necesita un motor o componente industrial, por lo que en la fabricación del lubricante se añade un compuesto determinado de aditivos atendiendo a las necesidades del fabricante del motor (Homologación o Nivel autorizado) o al uso al que va a ser destinado el lubricante en cuestión.

Los aditivos usados en el lubricante son:

Antioxidantes: Retrasan el envejecimiento prematuro del lubricante.
Antidesgaste Extrema Presion (EP): Forman una fina película en las paredes a lubricar. Se emplean mucho en lubricación por barboteo (Cajas de cambio y diferenciales)
Antiespumantes: Evitan la oxigenación del lubricante por cavitación reduciendo la tension superficial y asi impiden la formación de burbujas que llevarían aire al circuito de lubricación.
Antiherrumbre: Evita la formación de óxido en las paredes metálicas internas del motor y la condensación de vapor de agua.
Detergentes: Son los encargados de arrancar los depósitos de suciedad fruto de la combustión.
Dispersantes: Son los encargados de transportar la suciedad arrancada por los aditivos detergentes hasta el filtro o carter del motor.
Espesantes: Es un compuesto de polímeros que por accion de la temperatura aumentan de tamaño aumentando la viscosidad del lubricante para que siga proporcionando una presion constante de lubricación.
Diluyentes: Es un aditivo que reduce los microcristales de cera para que fluya el lubricante a bajas temperaturas.

Clasificaciones

Existen diversos tipos de clasificaciones de lubricantes según el ámbito geográfico, según sus propiedades y según el fabricante de la maquina a lubricar.

Según el ámbito geográfico podemos encontrar la clasificación americana API (American Petroleum Institute), la clasificacion Japonesa JASO (Japanese Automotive Standards Organization) y la Europea ACEA (Asociación de Constructores Europeos Asociados).

Según sus propiedades se clasifican según la norma SAE (Society of Automotive Engineers) que basicamente separa el comportamiento del lubricante a temperatura de 18ºC y la define con una letra W proveniente del inglés "Winter" (Invierno-Frio) y otra letra que define el comportamiento del lubricante en temperatura de trabajo 95ºC-105ºC. La tabla SAE hace referencia a las tolerancias que debe "llenar" el lubricante tanto a temperatura ambiente como a temperatura de trabajo, siempre teniendo en cuenta la temperatura interna del motor y como adicional la temperatura exterior que si bien infuye algo en el comportamiento no es la mas importante a la hora de elegir un lubricante adecuado.

Según el fabricante del motor o componente a lubricar existen las normativas de fabricante con diversas nomenclaturas tipo VW505.01, GM Dexos2, Dexron III, MB229.51, LL-01, etc... Los fabricantes de motores y componentes conocen al detalle su producto y son conscientes de la importancia de un lubricante adecuado y de las consecuencias en caso de un lubricante inadecuado. Con la finalidad de "protegerse" y distinguirse de sus competidores hace ya muchos años comenzaron a definir estándares de fabricacion de los lubricantes aptos para sus productos. Son las llamadas "Homologaciones del fabricante", que es la prueba de que el lubricante ha sido testado por el fabricante en el motor y por ello expide su correspondiente certificado de homologación.

Lamentablemente son muchas las marcas de lubricantes que no homologan sus productos conformandose con el "Nivel de homologación" que no es mas que un certificado de la compañía que ha fabricado el compuesto de aditivos de que estos están sujetos a la norma del fabricante, con lo que técnicamente no ofrecen un lubricante aprobado por el fabricante ni poseen el correspondiente certificado. Los acuerdos comerciales de los responsables de cada marca de vehículos, motores o componentes en cada pais con las diferentes empresas petroleras hacen que estas ultimas presenten los certificados de homologación exclusivamente de los fabricantes con los que ha llegado a acuerdo dificultando la diagnosis del lubricante adecuado para cada vehículo.
En todo caso cabe destacar que usando un lubricante con la homologación del fabricante de la maquina o vehículo las demás clasificaciones son complementarias. Hay mas de 72 homologaciones en el sector de lubricación automotríz debido a la reciente incorporacion de filtros de partículas y sistemas anticontaminación y hay fabricantes que disponen de varias normativas de homologación.

UNIDAD 5

Refrigeración





INDICE


 
Introducción Tipos
Elementos Termosifón
Bomba Circuito sellado

 

 

    Introducción:
Por refregeración entendemos el acto de evacuar el calor de un cuerpo, o moderar su etmpertura, hasta dejarla en un valor determinado o constante.
La temperatura que se alcanza en los cilingros, es muy elevada, por lo que es necesario refrigerarlos.
La refrigeración es el conjunto de elementos, que tienen como misión eliminar el exceso de calor acumulado en el motor, debido a las altas temperaturas, que alcanza con las explosiones y llevarlo a través del medio empleado, al exterior.
La temperatura normal de funcionamiento oscela entre los 75º y los 90º.
El exceso de calor propuciría dilatación y como consecuencia agarrotaría las piezas móviles. Por otro lado, estropearía la capa aceitosa del engrase, por lo que el motor se griaría al no ser adecuado el engrase y sufrirían las piezas vitales del motor.

    Tipos de refrigeración:
El medio empleado puede ser:
Por aire
La refrigeración por aire se usa frecuentamente en motocicletas y automóviles de tipo pequeño y principalmente en los que en sus notores los cilindros van dispuestos horizontalmente.
En las motocicletas, es aprovechado el aire que producen, cuando están en movimiento.
En los automóviles pequeños la corriente de aire es activa por un ventilador y canalizada hacia los cilintros.
Los motores qu se refrigeran por aire suelen pesar poco y ser muy ruidosos, se enfrían y calienta con facilidad, es es, son motores fríos, lo que obliga a usar frecuentemente el estarter.

Por agua
En la refrigeración por agua, ésta es el medio empleado para la dispersión del calor, dado que al circular entre los cilindros por una oqueddes practicadas en el bloque y la culata, llamadas cámaras de agua, recoge el calor y va a enriarse al radiador, disponiéndola para volver de nuevo al bloque y a las cámas de agua y circular entre los cilindros.

    Elementos:
Para la refrigeración por aire, nos vasta que ésta se logre mediante un ventilador. La corriente de aire AB enfría el cilindro provisto de aletas (Fig. 1).
Fig. 1.
En el sistema de refrigeración por agua, sigue siendo el aire un elemento principal (Fig. 2).
Fig. 2.
Una polea accionada accionada por el cigüeñal hace funcionar el ventilador que lleva a pasar el aire por el radiador.
El radiador es un depósito compuesto por láminas por donde circula el agua. Tiene un tapón por donde se rellena y dos comunicaciones con el bloque, una para mandarle agua y otra para recibirla.
Hay varios tipos de radiador, los mas comunes, son (Fig. 3):
  • Tubulares.
  • De láminas de agua.
  • De panal.
Fig. 3.
Los conductos que comunican con el bloque son de goma dura, llamados manguitos y sujetados por abrazaderas.
Los sistemas deventilación más empleados, son:
En los sistemas por bomba y por circuio sellado, llamado también de circulación forzada, la corriente de agua es accionada por una bomba de paletas que se encuentra en el mismo eje que el ventilador.
En tiempo frío, desde que se arranca el motor hasta que alcance la temperatura ideal de los 75º ó 90º, conviene que no circule agua fría del radidor al bloque, por lo que se intercala, a la salida del bloque, un elemento llamad termostato y que, mientras el agua no alcance la temperatura adecuada para el motor, no permita su circulación.
Para evitar que en tiempo devasiado frío se congele el agua del circuito, se suelen utilizar otros líqudos, que soportan bajas temperaturas sin solidificarse, denominados anticogelantes.
El termostato está formado por un material muy sensible al calor y consiste en una espiral bimetálica (Fig. 4) o un acordeón de metal muy fino onduladoy que ebido a la temperatura del agua abre o cierra una válvula, regulando así la circualción del refrigerante.
Fig. 4.

El sistema de termosifón basa su funcionamiento en la diferencia de peso del agua fría y el agua caliente, esta última pesa menos.
Dispone en principio de un radiador de grandes dimensiones y de conductos y camisas de agua ampias y sin estrecheces ni codos pronunciados para facilitar así la circulación.

En el sistema de bomba, el radiador no necesita ser tabn grande y sus conductos ya son más regulares, pues una bomba fuerza la circulación del agua.
La bomba está en el eje del ventilador que mueve el cigüeñal mediante una polea, en la entrada del radiador al motor.
En el conducto, que comunica el motor con el radiador y que sirve para la salida del agua del motor, se intercala el termostato (Fig. 2).

Para evitar trabajo al conductor, se creó el circuito sellado, que es copia del forzado por bomba, diferenciándose de él en que el vapor de agua no se va a perder, teniendo que rellenar cada cierto tiempo el radiador, sino que el vapor de agua, cuando ésta se calienta bastante, es recogido por un vaso de expansión, que comunica con el exterior mediante una válvula de seguridad y que cuando el agua se enfría, por diferencia de presión, vulve al radiador.